The solution thermodynamics of the water-soluble complexes formed between 3,4,3-LI(1,2-HOPO) and Zr(IV) or Pu(IV) were investigated to establish the metal coordination properties of this octadentate chelating agent. Stability constants log β110 = 43.1 ± 0.6 and 43.5 ± 0.7 were determined for [Zr(IV)(3,4,3-LI(1,2-HOPO))] and [Pu(IV)(3,4,3-LI(1,2-HOPO))], respectively, by spectrophotometric competition titrations against Ce(IV). Such high thermodynamic stabilities not only confirm the unparalleled Pu(IV) affinity of 3,4,3-LI(1,2-HOPO) as a decorporation agent but also corroborate the great potential of hydroxypyridinonate ligands as new (89)Zr-chelating platforms for immuno-PET applications. These experimental values are in excellent agreement with previous estimates and are discussed with respect to ionic radius and electronic configuration, in comparison with those of Ce(IV) and Th(IV). Furthermore, a liquid chromatography assay combined with mass spectrometric detection was developed to probe the separation of the neutral [M(IV)(3,4,3-LI(1,2-HOPO))] complex species (M = Zr, Ce, Th, and Pu), providing additional insight into the coordination differences between group IV and tetravalent f-block metals and on the role of d and f orbitals in bonding interactions.